The behavior of structures composed of composite materials
Titel: | The behavior of structures composed of composite materials / Jack R. Vinson ; Robert L. Sierakowski |
---|---|
Verfasser: | |
Beteiligt: | |
Ausgabe: | 2. ed. |
Veröffentlicht: | New York [u.a.] : Kluwer, 2002 |
Umfang: | XIV, 435 S. : Ill. ; 25 cm |
Format: | E-Book |
Sprache: | Englisch |
Schriftenreihe/ mehrbändiges Werk: |
Solid mechanics and its applications ; 105 |
RVK-Notation: |
·
|
Vorliegende Ausgabe: | Online-Ausg.: 2004. - Online-Ressource. |
ISBN: | 9780306484148 (Sekundärausgabe) |
Hinweise zum Inhalt: |
Inhaltsbeschreibung der Sammlung und Zugangshinweise
|
- Preface to the Second Edition
- p. VII
- Preface to the First Edition
- p. IX
- 1.
- Introduction to Composite Materials
- p. 1
- 1.1.
- General History
- p. 1
- 1.2.
- Composite Material Description
- p. 2
- 1.3.
- Types of Composite Materials
- p. 6
- 1.4.
- Constituent Properties
- p. 8
- 1.5.
- Composite Manufacturing, Fabrication and Processing
- p. 11
- 1.6.
- Uses of Composite Materials
- p. 21
- 1.7.
- Design and Analyses with Composite Materials
- p. 33
- 1.8.
- References
- p. 36
- 1.9.
- Journals
- p. 36
- 1.10.
- Problems
- p. 37
- 2.
- Anisotropic Elasticity and Composite Laminate Theory
- p. 39
- 2.1.
- Introduction
- p. 39
- 2.2.
- Derivation of the Anisotropic Elastic Stiffness and Compliance Matrices
- p. 40
- 2.3.
- The Physical Meaning of the Components of the Orthotropic Elasticity Tensor
- p. 46
- 2.4.
- Methods to Obtain Composite Elastic Properties from Fiber and Matrix Properties
- p. 50
- 2.5.
- Thermal and Hygrothermal Considerations
- p. 53
- 2.6.
- Time-Temperature Effects on Composite Materials
- p. 57
- 2.7.
- High Strain Rate Effects on Material Properties
- p. 58
- 2.8.
- Laminae of Composite Materials
- p. 59
- 2.9.
- Laminate Analyses
- p. 66
- 2.10.
- Piezoelectric Effects
- p. 76
- 2.11.
- References
- p. 77
- 2.12.
- Problems
- p. 79
- 3.
- Plates and Panels of Composite Materials
- p. 87
- 3.1.
- Introduction
- p. 87
- 3.2.
- Plate Equilibrium Equations
- p. 87
- 3.3.
- The Bending of Composite Material Laminated Plates: Classical Theory
- p. 91
- 3.4.
- Classical Plate Theory Boundary Conditions
- p. 94
- 3.5.
- Navier Solutions for Rectangular Composite Material Plates
- p. 95
- 3.6.
- Navier Solution for a Uniformly Loaded Simply Supported Plate - An Example Problem
- p. 98
- 3.7.
- Levy Solution for Plates of Composite Materials
- p. 102
- 3.8.
- Perturbation Solutions for the Bending of a Composite Material Plate With Mid-Plane Symmetry and No Bending-Twisting Coupling
- p. 106
- 3.9.
- Quasi-Isotropic Composite Panels Subjected to a Uniform Lateral Load
- p. 109
- 3.10.
- A Static Analysis of Composite Material Panels Including Transverse Shear Deformation Effects
- p. 111
- 3.11.
- Boundary Conditions for a Plate Using the Refined Plate Theory Which Includes Transverse Shear Deformation
- p. 114
- 3.12.
- Composite Plates on an Elastic Foundation
- p. 115
- 3.13.
- Solutions for Plates of Composite Materials Including Transverse-Shear Deformation Effects, Simply Supported on All Four Edges
- p. 116
- 3.14.
- Dynamic Effects on Panels of Composite Materials
- p. 119
- 3.15.
- Natural Flexural Vibrations of Rectangular Plates: Classical Theory
- p. 120
- 3.16.
- Natural Flexural Vibrations of Composite Material Plate Including Transverse-Shear Deformation Effects
- p. 122
- 3.17.
- Forced-Vibration Response of a Composite Material Plate Subjected to a Dynamic Lateral Load
- p. 124
- 3.18.
- Buckling of a Rectangular Composite Material Plate--Classical Theory
- p. 130
- 3.19.
- Buckling of a Composite Material Plate Including Transverse-Shear Deformation Effects
- p. 132
- 3.20.
- Some Remarks on Composite Structures
- p. 135
- 3.21.
- Methods of Analysis for Sandwich Panels With Composite Material Faces, and Their Structural Optimization
- p. 138
- 3.22.
- Governing Equations for a Composite Material Plate With Mid-Plane Asymmetry
- p. 138
- 3.23.
- Governing Equations for a Composite Material Plate With Bending-Twisting Coupling
- p. 139
- 3.24.
- Concluding Remarks
- p. 140
- 3.25.
- References
- p. 141
- 3.26.
- Problems and Exercises
- p. 143
- 4.
- Beams, Columns and Rods of Composite Materials
- p. 155
- 4.1.
- Development of Classical Beam Theory
- p. 155
- 4.2.
- Some Composite Beam Solutions
- p. 160
- 4.3.
- Composite Beams With Abrupt Changes in Geometry or Load
- p. 165
- 4.4.
- Solutions by Green's Functions
- p. 171
- 4.5.
- Composite Beams of Continuously Varying Cross-Section
- p. 173
- 4.6.
- Rods
- p. 177
- 4.7.
- Vibration of Composite Beams
- p. 179
- 4.8.
- Beams With Mid-Plane Asymmetry
- p. 183
- 4.9.
- Advanced Beam Theory for Dynamic Loading Including Mid-Plane Asymmetry
- p. 184
- 4.10.
- Advanced Beam Theory Including Transverse Shear Deformation Effects
- p. 193
- 4.11.
- Buckling of Composite Columns
- p. 197
- 4.12.
- References
- p. 200
- 4.13.
- Problems
- p. 200
- 5.
- Composite Material Shells
- p. 215
- 5.1.
- Introduction
- p. 215
- 5.2.
- Analysis of Composite Material Circular Cylindrical Shells
- p. 215
- 5.3.
- Some Edge Load and Particular Solutions
- p. 222
- 5.4.
- A General Solution for Composite Cylindrical Shells Under Axially Symmetric Loads
- p. 228
- 5.5.
- Response of a Long Axi-Symmetric Laminated Composite Shell to an Edge Displacement
- p. 230
- 5.6.
- Sample Solutions
- p. 232
- 5.7.
- Mid-Plane Asymmetric Circular Cylindrical Shells
- p. 239
- 5.8.
- Buckling of Circular Cylindrical Shells of Composite Materials Subjected to Various Loads
- p. 243
- 5.9.
- Vibrations of Composite Shells
- p. 252
- 5.10.
- Additional Reading On Composite Shells
- p. 253
- 5.11.
- References
- p. 253
- 5.12.
- Problems
- p. 254
- 6.
- Energy Methods For Composite Material Structures
- p. 259
- 6.1.
- Introduction
- p. 259
- 6.2.
- Theorem of Minimum Potential Energy
- p. 260
- 6.3.
- Analysis of a Beam Using the Theorem of Minimum Potential Energy
- p. 261
- 6.4.
- Use of Minimum Potential Energy for Designing a Composite Electrical Transmission Tower
- p. 268
- 6.5.
- Minimum Potential Energy for Rectangular Plates
- p. 272
- 6.6.
- A Rectangular Composite Material Plate Subjected to Lateral and Hygrothermal Loads
- p. 274
- 6.7.
- In-Plane Shear Strength Determination of Composite Materials in Laminated Composite Panels
- p. 276
- 6.8.
- Use of the Theorem of Minimum Potential Energy to Determine Buckling Loads in Composite Plates
- p. 282
- 6.9.
- Trial Functions for Various Boundary Conditions for Composite Material Rectangular Plates
- p. 285
- 6.10.
- Reissner's Variational Theorem and its Applications
- p. 286
- 6.11.
- Static Deformation of Moderately Thick Beams
- p. 289
- 6.12.
- Flexural Vibrations of Moderately Thick Beams
- p. 293
- 6.13.
- Flexural Natural Frequencies of a Simply Supported Beam Including Transverse Shear Deformation and Rotatory Inertia Effects
- p. 295
- 6.14.
- References
- p. 299
- 6.15.
- Problems
- p. 299
- 7.
- Strength and Failure Theories
- p. 303
- 7.1.
- Introduction
- p. 303
- 7.2.
- Failure of Monolithic Isotropic Materials
- p. 306
- 7.3.
- Anisotropic Strength and Failure Theories
- p. 309
- 7.3.1.
- Maximum Stress Theory
- p. 310
- 7.3.2.
- Maximum Strain Theory
- p. 310
- 7.3.3.
- Interactive Failure Theories
- p. 311
- 7.4.
- Lamina Strength Theories
- p. 315
- 7.5.
- Laminate Strength Analysis
- p. 328
- 7.6.
- References
- p. 331
- 7.7.
- Problems
- p. 332
- 8.
- Joining of Composite Material Structures
- p. 333
- 8.1.
- General Remarks
- p. 333
- 8.2.
- Adhesive Bonding
- p. 333
- 8.3.
- Mechanical Fastening
- p. 348
- 8.4.
- Recommended Reading
- p. 354
- 8.5.
- References
- p. 354
- 8.6.
- Problems
- p. 357
- 9.
- Introduction to Composite Design
- p. 361
- 9.1.
- Introduction
- p. 361
- 9.2.
- Structural Composite Design Procedures
- p. 368
- 9.3.
- Engineering Analysis
- p. 371
- Appendices
- p. 375
- A-1
- Micromechanics
- p. 375
- A-2
- Test Standards for Polymer Matrix Composites
- p. 391
- A-3
- Properties of Various Polymer Composites
- p. 393
- Author Index
- p. 397
- Subject Index
- p. 401