The behavior of structures composed of composite materials

Titel: The behavior of structures composed of composite materials / Jack R. Vinson ; Robert L. Sierakowski
Verfasser:
Beteiligt:
Ausgabe: 2. ed.
Veröffentlicht: New York ˜[u.a.]œ : Kluwer, 2002
Umfang: XIV, 435 S. : Ill. ; 25 cm
Format: E-Book
Sprache: Englisch
Schriftenreihe/
mehrbändiges Werk:
Solid mechanics and its applications ; 105
RVK-Notation:
Schlagworte:
Vorliegende Ausgabe: Online-Ausg.: 2004. - Online-Ressource.
ISBN: 9780306484148 (Sekundärausgabe)
  • Preface to the Second Edition
  • p. VII
  • Preface to the First Edition
  • p. IX
  • 1.
  • Introduction to Composite Materials
  • p. 1
  • 1.1.
  • General History
  • p. 1
  • 1.2.
  • Composite Material Description
  • p. 2
  • 1.3.
  • Types of Composite Materials
  • p. 6
  • 1.4.
  • Constituent Properties
  • p. 8
  • 1.5.
  • Composite Manufacturing, Fabrication and Processing
  • p. 11
  • 1.6.
  • Uses of Composite Materials
  • p. 21
  • 1.7.
  • Design and Analyses with Composite Materials
  • p. 33
  • 1.8.
  • References
  • p. 36
  • 1.9.
  • Journals
  • p. 36
  • 1.10.
  • Problems
  • p. 37
  • 2.
  • Anisotropic Elasticity and Composite Laminate Theory
  • p. 39
  • 2.1.
  • Introduction
  • p. 39
  • 2.2.
  • Derivation of the Anisotropic Elastic Stiffness and Compliance Matrices
  • p. 40
  • 2.3.
  • The Physical Meaning of the Components of the Orthotropic Elasticity Tensor
  • p. 46
  • 2.4.
  • Methods to Obtain Composite Elastic Properties from Fiber and Matrix Properties
  • p. 50
  • 2.5.
  • Thermal and Hygrothermal Considerations
  • p. 53
  • 2.6.
  • Time-Temperature Effects on Composite Materials
  • p. 57
  • 2.7.
  • High Strain Rate Effects on Material Properties
  • p. 58
  • 2.8.
  • Laminae of Composite Materials
  • p. 59
  • 2.9.
  • Laminate Analyses
  • p. 66
  • 2.10.
  • Piezoelectric Effects
  • p. 76
  • 2.11.
  • References
  • p. 77
  • 2.12.
  • Problems
  • p. 79
  • 3.
  • Plates and Panels of Composite Materials
  • p. 87
  • 3.1.
  • Introduction
  • p. 87
  • 3.2.
  • Plate Equilibrium Equations
  • p. 87
  • 3.3.
  • The Bending of Composite Material Laminated Plates: Classical Theory
  • p. 91
  • 3.4.
  • Classical Plate Theory Boundary Conditions
  • p. 94
  • 3.5.
  • Navier Solutions for Rectangular Composite Material Plates
  • p. 95
  • 3.6.
  • Navier Solution for a Uniformly Loaded Simply Supported Plate - An Example Problem
  • p. 98
  • 3.7.
  • Levy Solution for Plates of Composite Materials
  • p. 102
  • 3.8.
  • Perturbation Solutions for the Bending of a Composite Material Plate With Mid-Plane Symmetry and No Bending-Twisting Coupling
  • p. 106
  • 3.9.
  • Quasi-Isotropic Composite Panels Subjected to a Uniform Lateral Load
  • p. 109
  • 3.10.
  • A Static Analysis of Composite Material Panels Including Transverse Shear Deformation Effects
  • p. 111
  • 3.11.
  • Boundary Conditions for a Plate Using the Refined Plate Theory Which Includes Transverse Shear Deformation
  • p. 114
  • 3.12.
  • Composite Plates on an Elastic Foundation
  • p. 115
  • 3.13.
  • Solutions for Plates of Composite Materials Including Transverse-Shear Deformation Effects, Simply Supported on All Four Edges
  • p. 116
  • 3.14.
  • Dynamic Effects on Panels of Composite Materials
  • p. 119
  • 3.15.
  • Natural Flexural Vibrations of Rectangular Plates: Classical Theory
  • p. 120
  • 3.16.
  • Natural Flexural Vibrations of Composite Material Plate Including Transverse-Shear Deformation Effects
  • p. 122
  • 3.17.
  • Forced-Vibration Response of a Composite Material Plate Subjected to a Dynamic Lateral Load
  • p. 124
  • 3.18.
  • Buckling of a Rectangular Composite Material Plate--Classical Theory
  • p. 130
  • 3.19.
  • Buckling of a Composite Material Plate Including Transverse-Shear Deformation Effects
  • p. 132
  • 3.20.
  • Some Remarks on Composite Structures
  • p. 135
  • 3.21.
  • Methods of Analysis for Sandwich Panels With Composite Material Faces, and Their Structural Optimization
  • p. 138
  • 3.22.
  • Governing Equations for a Composite Material Plate With Mid-Plane Asymmetry
  • p. 138
  • 3.23.
  • Governing Equations for a Composite Material Plate With Bending-Twisting Coupling
  • p. 139
  • 3.24.
  • Concluding Remarks
  • p. 140
  • 3.25.
  • References
  • p. 141
  • 3.26.
  • Problems and Exercises
  • p. 143
  • 4.
  • Beams, Columns and Rods of Composite Materials
  • p. 155
  • 4.1.
  • Development of Classical Beam Theory
  • p. 155
  • 4.2.
  • Some Composite Beam Solutions
  • p. 160
  • 4.3.
  • Composite Beams With Abrupt Changes in Geometry or Load
  • p. 165
  • 4.4.
  • Solutions by Green's Functions
  • p. 171
  • 4.5.
  • Composite Beams of Continuously Varying Cross-Section
  • p. 173
  • 4.6.
  • Rods
  • p. 177
  • 4.7.
  • Vibration of Composite Beams
  • p. 179
  • 4.8.
  • Beams With Mid-Plane Asymmetry
  • p. 183
  • 4.9.
  • Advanced Beam Theory for Dynamic Loading Including Mid-Plane Asymmetry
  • p. 184
  • 4.10.
  • Advanced Beam Theory Including Transverse Shear Deformation Effects
  • p. 193
  • 4.11.
  • Buckling of Composite Columns
  • p. 197
  • 4.12.
  • References
  • p. 200
  • 4.13.
  • Problems
  • p. 200
  • 5.
  • Composite Material Shells
  • p. 215
  • 5.1.
  • Introduction
  • p. 215
  • 5.2.
  • Analysis of Composite Material Circular Cylindrical Shells
  • p. 215
  • 5.3.
  • Some Edge Load and Particular Solutions
  • p. 222
  • 5.4.
  • A General Solution for Composite Cylindrical Shells Under Axially Symmetric Loads
  • p. 228
  • 5.5.
  • Response of a Long Axi-Symmetric Laminated Composite Shell to an Edge Displacement
  • p. 230
  • 5.6.
  • Sample Solutions
  • p. 232
  • 5.7.
  • Mid-Plane Asymmetric Circular Cylindrical Shells
  • p. 239
  • 5.8.
  • Buckling of Circular Cylindrical Shells of Composite Materials Subjected to Various Loads
  • p. 243
  • 5.9.
  • Vibrations of Composite Shells
  • p. 252
  • 5.10.
  • Additional Reading On Composite Shells
  • p. 253
  • 5.11.
  • References
  • p. 253
  • 5.12.
  • Problems
  • p. 254
  • 6.
  • Energy Methods For Composite Material Structures
  • p. 259
  • 6.1.
  • Introduction
  • p. 259
  • 6.2.
  • Theorem of Minimum Potential Energy
  • p. 260
  • 6.3.
  • Analysis of a Beam Using the Theorem of Minimum Potential Energy
  • p. 261
  • 6.4.
  • Use of Minimum Potential Energy for Designing a Composite Electrical Transmission Tower
  • p. 268
  • 6.5.
  • Minimum Potential Energy for Rectangular Plates
  • p. 272
  • 6.6.
  • A Rectangular Composite Material Plate Subjected to Lateral and Hygrothermal Loads
  • p. 274
  • 6.7.
  • In-Plane Shear Strength Determination of Composite Materials in Laminated Composite Panels
  • p. 276
  • 6.8.
  • Use of the Theorem of Minimum Potential Energy to Determine Buckling Loads in Composite Plates
  • p. 282
  • 6.9.
  • Trial Functions for Various Boundary Conditions for Composite Material Rectangular Plates
  • p. 285
  • 6.10.
  • Reissner's Variational Theorem and its Applications
  • p. 286
  • 6.11.
  • Static Deformation of Moderately Thick Beams
  • p. 289
  • 6.12.
  • Flexural Vibrations of Moderately Thick Beams
  • p. 293
  • 6.13.
  • Flexural Natural Frequencies of a Simply Supported Beam Including Transverse Shear Deformation and Rotatory Inertia Effects
  • p. 295
  • 6.14.
  • References
  • p. 299
  • 6.15.
  • Problems
  • p. 299
  • 7.
  • Strength and Failure Theories
  • p. 303
  • 7.1.
  • Introduction
  • p. 303
  • 7.2.
  • Failure of Monolithic Isotropic Materials
  • p. 306
  • 7.3.
  • Anisotropic Strength and Failure Theories
  • p. 309
  • 7.3.1.
  • Maximum Stress Theory
  • p. 310
  • 7.3.2.
  • Maximum Strain Theory
  • p. 310
  • 7.3.3.
  • Interactive Failure Theories
  • p. 311
  • 7.4.
  • Lamina Strength Theories
  • p. 315
  • 7.5.
  • Laminate Strength Analysis
  • p. 328
  • 7.6.
  • References
  • p. 331
  • 7.7.
  • Problems
  • p. 332
  • 8.
  • Joining of Composite Material Structures
  • p. 333
  • 8.1.
  • General Remarks
  • p. 333
  • 8.2.
  • Adhesive Bonding
  • p. 333
  • 8.3.
  • Mechanical Fastening
  • p. 348
  • 8.4.
  • Recommended Reading
  • p. 354
  • 8.5.
  • References
  • p. 354
  • 8.6.
  • Problems
  • p. 357
  • 9.
  • Introduction to Composite Design
  • p. 361
  • 9.1.
  • Introduction
  • p. 361
  • 9.2.
  • Structural Composite Design Procedures
  • p. 368
  • 9.3.
  • Engineering Analysis
  • p. 371
  • Appendices
  • p. 375
  • A-1
  • Micromechanics
  • p. 375
  • A-2
  • Test Standards for Polymer Matrix Composites
  • p. 391
  • A-3
  • Properties of Various Polymer Composites
  • p. 393
  • Author Index
  • p. 397
  • Subject Index
  • p. 401