Graph-based social media analysis

Titel: Graph-based social media analysis / edited by Ioannis Pitas, Aristotle University of Thessaloniki Greece
Beteiligt:
Veröffentlicht: Boca Raton; London; New York : CRC Press, Taylor & Francis Group, [2016]
Umfang: xvii, 424 Seiten : Illustrationen ; 26 cm
Format: Buch
Sprache: Englisch
Schriftenreihe/
mehrbändiges Werk:
Chapman & Hall/CRC data mining and knowledge discovery series
Schlagworte:
ISBN: 9781498719049
Buchumschlag
X
  • Preface
  • p. xiii
  • Contributors
  • p. xv
  • Editor Biography
  • p. xvii
  • 1
  • Graphs in Social and Digital Media
  • p. 1
  • 1.1
  • Introduction
  • p. 1
  • 1.2
  • Dominant social networking/media platforms
  • p. 3
  • 1.3
  • Collecting data from social media sites
  • p. 5
  • 1.4
  • Social media graphs
  • p. 8
  • 1.4.1
  • Graphs from Facebook data
  • p. 8
  • 1.4.2
  • Graphs from Twitter data
  • p. 10
  • 1.4.3
  • Graphs from bibliographic data
  • p. 12
  • 1.5
  • Graph storage formats and visualization
  • p. 14
  • 1.6
  • Big data issues in social and digital media
  • p. 15
  • 1.7
  • Distributed computing platforms
  • p. 15
  • 1.8
  • Conclusions
  • p. 18
  • Bibliography
  • p. 18
  • 2
  • Mathematical Preliminaries: Graphs and Matrices
  • p. 21
  • 2.1
  • Graph basics
  • p. 21
  • 2.2
  • Linear algebra tools
  • p. 24
  • 2.3
  • Matrix decompositions
  • p. 28
  • 2.4
  • Vector and matrix derivatives
  • p. 31
  • Bibliography
  • p. 31
  • 3
  • Algebraic Graph Analysis
  • p. 35
  • 3.1
  • Introduction
  • p. 35
  • 3.2
  • Spectral graph theory
  • p. 36
  • 3.2.1
  • Adjacency and Laplacian matrix
  • p. 36
  • 3.2.2
  • Similarity matrix and nearest neighbor graph
  • p. 37
  • 3.3
  • Applications of graph analysis
  • p. 38
  • 3.4
  • Random graph generation
  • p. 40
  • 3.4.1
  • Desirable random graph properties
  • p. 41
  • 3.4.2
  • Random graph generation models
  • p. 41
  • 3.4.3
  • Spectral graph generation
  • p. 43
  • 3.5
  • Graph clustering
  • p. 45
  • 3.5.1
  • Global clustering algorithms
  • p. 46
  • 3.5.2
  • Local clustering algorithms
  • p. 48
  • 3.5.3
  • Spectral clustering algorithms
  • p. 48
  • 3.5.4
  • Overlapping community detection
  • p. 50
  • 3.6
  • Graph matching
  • p. 51
  • 3.6.1
  • Spectral graph matching
  • p. 53
  • 3.6.2
  • Frequent subgraph mining
  • p. 54
  • 3.7
  • Random walks
  • p. 54
  • 3.8
  • Graph anomaly detection
  • p. 56
  • 3.8.1
  • Spectral anomaly detection
  • p. 57
  • 3.9
  • Conclusions
  • p. 58
  • Bibliography
  • p. 59
  • 4
  • Web Search Based on Ranking
  • p. 67
  • 4.1
  • Introduction
  • p. 67
  • 4.2
  • Information Retrieval Background
  • p. 69
  • 4.2.1
  • Document representation
  • p. 69
  • 4.2.2
  • Retrieval models
  • p. 71
  • 4.3
  • Relevance Beyond the Web Page Text
  • p. 72
  • 4.3.1
  • Anchor text
  • p. 72
  • 4.3.2
  • Query expansion
  • p. 73
  • 4.4
  • Centrality and Prestige
  • p. 76
  • 4.4.1
  • Basic measures
  • p. 77
  • 4.4.2
  • Eigenvector centrality and prestige
  • p. 80
  • 4.4.3
  • PageRank
  • p. 81
  • 4.4.4
  • Hubs and authorities
  • p. 84
  • 4.4.5
  • SimRank
  • p. 87
  • 4.5
  • Topic-Sensitive Ranking
  • p. 88
  • 4.5.1
  • Content as topic
  • p. 89
  • 4.5.2
  • Trust as topic
  • p. 91
  • 4.6
  • Ranking in Heterogeneous Networks
  • p. 92
  • 4.6.1
  • Ranking in heterogeneous information networks
  • p. 93
  • 4.6.2
  • Ranking-Based clustering
  • p. 95
  • 4.7
  • Organizing Search Results
  • p. 97
  • 4.8
  • Conclusion
  • p. 99
  • Bibliography
  • p. 100
  • 5
  • Label Propagation and Information Diffusion in Graphs
  • p. 107
  • 5.1
  • Introduction
  • p. 108
  • 5.2
  • Graph construction approaches
  • p. 109
  • 5.2.1
  • Neighborhood approaches
  • p. 110
  • 5.2.2
  • Local reconstruction approaches
  • p. 111
  • 5.2.3
  • Metric learning approaches
  • p. 113
  • 5.2.4
  • Scalable graph construction methods
  • p. 118
  • 5.3
  • Label inference methods
  • p. 120
  • 5.3.1
  • Iterative algorithms
  • p. 120
  • 5.3.2
  • Random walks
  • p. 122
  • 5.3.3
  • Graph regularization
  • p. 123
  • 5.3.4
  • Graph kernel regularization
  • p. 127
  • 5.3.5
  • Inductive label inference
  • p. 128
  • 5.3.6
  • Label propagation on data with multiple representations
  • p. 129
  • 5.3.7
  • Label propagation on hypergraphs
  • p. 131
  • 5.3.8
  • Label propagation initialization
  • p. 132
  • 5.3.9
  • Applications in digital media
  • p. 133
  • 5.4
  • Diffusion processes
  • p. 134
  • 5.4.1
  • Diffusion in physics
  • p. 134
  • 5.4.2
  • Diffusion in sociology
  • p. 135
  • 5.4.3
  • Diffusion in social media
  • p. 135
  • 5.5
  • Social network diffusion models
  • p. 136
  • 5.5.1
  • Game theoretical diffusion models
  • p. 137
  • 5.5.2
  • Epidemic diffusion models
  • p. 137
  • 5.5.3
  • Threshold diffusion models
  • p. 138
  • 5.5.4
  • Cascade diffusion models
  • p. 139
  • 5.5.5
  • Influence maximization
  • p. 140
  • 5.5.6
  • Cross-Media information diffusion
  • p. 142
  • 5.5.7
  • Other applications of information diffusion
  • p. 143
  • 5.6
  • Conclusions
  • p. 145
  • Bibliography
  • p. 146
  • 6
  • Graph-Based Pattern Classification and Dimensionality Reduction
  • p. 163
  • 6.1
  • Introduction
  • p. 163
  • 6.2
  • Notations
  • p. 164
  • 6.3
  • Unsupervised Methods
  • p. 166
  • 6.3.1
  • Locality Preserving Projections
  • p. 166
  • 6.3.2
  • Locally Linear Embedding
  • p. 167
  • 6.3.3
  • ISOMAP
  • p. 168
  • 6.3.4
  • Laplacian Embedding
  • p. 168
  • 6.3.5
  • Diffusion Maps
  • p. 168
  • 6.4
  • Supervised Methods
  • p. 169
  • 6.4.1
  • Linear Discriminant Analysis
  • p. 169
  • 6.4.2
  • Marginal Fisher Analysis
  • p. 171
  • 6.4.3
  • Local Fisher Discriminant Analysis
  • p. 171
  • 6.4.4
  • Graph Embedding
  • p. 172
  • 6.4.5
  • Minimum Class Variance Extreme Learning Machine
  • p. 173
  • 6.4.6
  • Minimum Class Variance Support Vector Machine
  • p. 174
  • 6.4.7
  • Graph Embedded Support Vector Machines
  • p. 174
  • 6.5
  • Semi-Supervised Methods
  • p. 175
  • 6.5.1
  • Semi-Supervised Discriminant Analysis
  • p. 176
  • 6.5.2
  • Laplacian Support Vector Machine
  • p. 176
  • 6.5.3
  • Semi-Supervised Extreme Learning Machine
  • p. 177
  • 6.6
  • Applications
  • p. 177
  • 6.7
  • Conclusions
  • p. 178
  • Bibliography
  • p. 179
  • 7
  • Matrix and Tensor Factorization with Reconimender System Applications
  • p. 187
  • 7.1
  • Introduction
  • p. 187
  • 7.2
  • Singular Value Decomposition on Matrices for Recommender Systems
  • p. 189
  • 7.2.1
  • Applying the SVD and Preserving the Largest Singular Values
  • p. 190
  • 7.2.2
  • Generating the Neighborhood of Users/Items
  • p. 191
  • 7.2.3
  • Generating the Recommendation List
  • p. 191
  • 7.2.4
  • Inserting a Test User in the c-dimensional Space
  • p. 192
  • 7.2.5
  • Other Factorization Methods
  • p. 192
  • 7.3
  • Higher Order Singular Value Decomposition (HOSVD) on Tensors
  • p. 193
  • 7.3.1
  • From SVD to HOSVD
  • p. 193
  • 7.3.2
  • HOSVD for Recommendations in Social Tagging Systems
  • p. 196
  • 7.3.3
  • Handling the Sparsity Problem
  • p. 200
  • 7.3.4
  • Inserting New Users, Tags, or Items
  • p. 201
  • 7.3.5
  • Other Scalable Factorization Models
  • p. 204
  • 7.4
  • A Real Geo-Social System-Based on HOSVD
  • p. 205
  • 7.4.1
  • GeoSocialRec Website
  • p. 205
  • 7.4.2
  • GeoSocialRec Database and Recommendation Engine
  • p. 207
  • 7.4.3
  • Experiments
  • p. 208
  • 7.5
  • Conclusion
  • p. 210
  • Bibliography
  • p. 210
  • 8
  • Multimedia Social Search Based on Hypergraph Learning
  • p. 215
  • 8.1
  • Introduction
  • p. 215
  • 8.2
  • Hypergraphs
  • p. 218
  • 8.2.1
  • Uniform hypergraphs
  • p. 220
  • 8.3
  • Game-Theoretic approaches to uniform hypergraph clustering
  • p. 223
  • 8.4
  • Spectral clustering for arbitrary hypergraphs
  • p. 229
  • 8.5
  • Ranking on hypergraphs
  • p. 238
  • 8.5.1
  • Enforcing structural constraints
  • p. 239
  • 8.5.2
  • Learning hypcredge weights
  • p. 241
  • 8.6
  • Applications
  • p. 243
  • 8.6.1
  • High-order web link analysis
  • p. 243
  • 8.6.2
  • Hypergraph matching for object recognition
  • p. 247
  • 8.6.3
  • Music recommendation and personalized music tagging
  • p. 249
  • 8.6.4
  • Simultaneous image tagging and geo-location prediction
  • p. 251
  • 8.6.5
  • Social image search exploiting joint visual-textual information
  • p. 254
  • 8.6.6
  • Annotation, classification, and tourism recommendation driven by probabilistic latent semantic analysis
  • p. 256
  • 8.7
  • Big data: Randomized methods for matrix/hypermatrix decompositions
  • p. 261
  • 8.8
  • Conclusions
  • p. 265
  • 8.9
  • Acknowledgments
  • p. 267
  • Bibliography
  • p. 267
  • 9
  • Graph Signal Processing in Social Media
  • p. 275
  • 9.1
  • Motivation
  • p. 275
  • 9.2
  • Graph signal processing (GSP)
  • p. 277
  • 9.2.1
  • Basics of graph signal processing
  • p. 277
  • 9.2.2
  • Spectral representation of graph signals
  • p. 279
  • 9.2.3
  • Downsampling in graphs
  • p. 280
  • 9.2.4
  • Graph wavelets and filterbanks
  • p. 282
  • 9.3
  • Applications
  • p. 282
  • 9.3.1
  • Information diffusion pattern analysis
  • p. 282
  • 9.3.2
  • Interpolation in graphs
  • p. 284
  • 9.3.2.1
  • Movie recommendation system
  • p. 286
  • 9.4
  • Conclusions
  • p. 289
  • Bibliography
  • p. 289
  • 10
  • Big Data Analytics for Social Networks
  • p. 293
  • 10.1
  • Introduction
  • p. 294
  • 10.1.1
  • Signal processing for big data
  • p. 294
  • 10.1.2
  • Social network analytics problems
  • p. 295
  • 10.2
  • Visualizing and reducing dimension in social nets
  • p. 296
  • 10.2.1
  • Kernel-based graph embedding
  • p. 296
  • 10.2.2
  • Centrality-constraints
  • p. 298
  • 10.2.3
  • Numerical tests
  • p. 300
  • 10.2.4
  • Visualization of dynamic social networks
  • p. 300
  • 10.3
  • Inference and imputation on social graphs
  • p. 303
  • 10.3.1
  • Distributed anomaly detection for social graphs
  • p. 303
  • 10.3.1.1
  • Anomaly detection via sparse plus low-rank decomposition
  • p. 303
  • 10.3.1.2
  • In-network processing algorithm
  • p. 305
  • 10.3.1.3
  • Numerical tests
  • p. 306
  • 10.3.2
  • Prediction from partially-observed network processes
  • p. 307
  • 10.3.2.1
  • Semi-supervised prediction of network processes
  • p. 308
  • 10.3.2.2
  • Data-driven dictionary learning
  • p. 309
  • 10.3.2.3
  • Numerical tests
  • p. 310
  • 10.4
  • Unveiling communities in social networks
  • p. 311
  • 10.4.1
  • Big data spectral clustering
  • p. 312
  • 10.4.1.1
  • Numerical tests
  • p. 315
  • 10.4.2
  • Robust kernel PCA
  • p. 316
  • 10.4.2.1
  • Numerical tests
  • p. 319
  • 10.5
  • Topology tracking from information cascades
  • p. 319
  • 10.5.1
  • Dynamic SEMs for tracking cascades
  • p. 321
  • 10.5.1.1
  • Model and problem statement
  • p. 322
  • 10.5.1.2
  • Exponentially-weighted least-squares estimator
  • p. 323
  • 10.5.2
  • Topology tracking algorithm
  • p. 324
  • 10.5.2.1
  • Accelerated convergence
  • p. 326
  • 10.5.3
  • Real-Time operation
  • p. 327
  • 10.5.3.1
  • Premature termination
  • p. 327
  • 10.5.3.2
  • Stochastic gradient descent iterations
  • p. 327
  • 10.5.4
  • Experiments on real data
  • p. 328
  • 10.6
  • Conclusion
  • p. 330
  • 10.7
  • Acknowledgments
  • p. 330
  • Bibliography
  • p. 330
  • 11
  • Semantic Model Adaptation for Evolving Big Social Data
  • p. 341
  • 11.1
  • Introduction to Social Data Evolution
  • p. 341
  • 11.2
  • Latent Model Adaptation
  • p. 343
  • 11.2.1
  • Incremental Latent Semantic Analysis
  • p. 343
  • 11.2.2
  • Incremental Probabilistic Latent Semantic Analysis
  • p. 346
  • 11.2.3
  • Incremental Latent Dirichlet Allocation
  • p. 355
  • 11.3
  • Incremental Spectral Clustering
  • p. 359
  • 11.4
  • Tensor Model Adaptation
  • p. 362
  • 11.4.1
  • Basic Tensor Concepts
  • p. 362
  • 11.4.2
  • Incremental Tensor Analysis
  • p. 363
  • 11.5
  • Parallel and Distributed Approaches for Big Data Analysis
  • p. 368
  • 11.5.1
  • Parallel Probabilistic Latent Semantic Analysis
  • p. 368
  • 11.5.2
  • Parallel Latent Dirichlet Allocation
  • p. 369
  • 11.5.3
  • Parallel Spectral Clustering
  • p. 371
  • 11.5.4
  • Distributed Tensor Decomposition
  • p. 373
  • 11.6
  • Applications to Evolving Social Data Analysis
  • p. 375
  • 11.6.1
  • Incremental Label Propagation
  • p. 375
  • 11.6.2
  • Incremental Graph Clustering in Dynamic Social Networks
  • p. 376
  • 11.7
  • Conclusions
  • p. 379
  • Bibliography
  • p. 381
  • 12
  • Big Graph Storage, Processing and Visualization
  • p. 391
  • 12.1
  • Introduction
  • p. 391
  • 12.2
  • Basic Notions
  • p. 393
  • 12.3
  • Big Graph Data Storage
  • p. 395
  • 12.3.1
  • DBMS Architectures
  • p. 395
  • 12.3.2
  • Graph DBMSs
  • p. 397
  • 12.3.3
  • Storing and indexing graph structures
  • p. 399
  • 12.4
  • Graph Data Processing
  • p. 401
  • 12.4.1
  • Querying graphs in relational DBMS
  • p. 402
  • 12.4.2
  • Graph querying in Datalog
  • p. 403
  • 12.4.3
  • Query languages in graph DBMS
  • p. 403
  • 12.5
  • Graph Data Visualization
  • p. 405
  • 12.5.1
  • Static graph visualization
  • p. 406
  • 12.5.2
  • Dynamic graph visualization
  • p. 408
  • 12.6
  • Conclusions
  • p. 409
  • Bibliography
  • p. 411
  • Index
  • p. 417