Towards understanding R-loop regulation by RNAse H1 in saccharomyces cerevisiae
| Titel: | Towards understanding R-loop regulation by RNAse H1 in saccharomyces cerevisiae / Fabio Pereira Bento |
|---|---|
| Verfasser: | |
| Körperschaft: | |
| Veröffentlicht: | Mainz, 2023 |
| Umfang: | 1 Online-Ressource (II, 149 Seiten) : Illustrationen, Diagramme |
| Format: | E-Book |
| Sprache: | Englisch |
| Hochschulschrift: | Dissertation, Johannes Gutenberg-Universität Mainz, 2023 |
| Andere Ausgaben: |
Erscheint auch als Druck-Ausgabe: Pereira Bento, Fabio, 1992-. Towards understanding R-loop regulation by RNAse H1 in saccharomyces cerevisiae / Fabio Pereira Bento. - 2023
|
X
alg: 50906068 001A $00077:26-06-23 001B $01999:25-05-25 $t23:31:42.000 001D $00077:26-06-23 001U $0utf8 001X $00 002@ $0Oau 002C $aText $btxt $2rdacontent 002D $aComputermedien $bc $2rdamedia 002E $aOnline-Ressource $bcr $2rdacarrier 003@ $0509060684 004P $010.25358/openscience-9113 $S0 004U $0urn:nbn:de:hebis:77-openscience-1fc85da6-3c27-4b77-8be7-b7363be969ae0 007A $0509060684 $aHEB 009Q $uhttp://doi.org/10.25358/openscience-9113 $xR 009Q $uhttps://nbn-resolving.org/urn:nbn:de:hebis:77-openscience-1fc85da6-3c27-4b77-8be7-b7363be969ae0 $xR 009Q $S0 $uhttps://openscience.ub.uni-mainz.de/handle/20.500.12030/9130 $xH 010@ $aeng 010E $erda 011@ $a2023 013D $RWissenschaftliche Literatur $#Dissertations, Academic $#Thèses et écrits académiques $74113937-9 $8Hochschulschrift [Ts1] $9085338818 021A $aTowards understanding R-loop regulation by RNAse H1 in saccharomyces cerevisiae $hFabio Pereira Bento 028A $BVerfasser $4aut $8Pereira Bento, Fabio$Z1992- [Tp3] $9509060749 029F $BGrad-verleihende Institution $#Jogu $#JGU $#University Mainz $#University of Mainz $#Mainz University $#Johannes Gutenberg University Mainz $#Johannes-Gutenberg-Universität Mainz $#Gutenberg-Universität Mainz $#Johannes Gutenberg Universität Mainz $#Gutenberg Universität Mainz $#Johannes Gutenberg-Universität Mainz, Pressestelle $#Univ. Mainz $#Universität Mainz $4dgg $72024320-0 $8Johannes Gutenberg-Universität Mainz [Tb1] $9042777143 033A $pMainz 033E $pMainz $nJohannes Gutenberg-Universität Mainz 034D $a1 Online-Ressource (II, 149 Seiten) 034M $aIllustrationen, Diagramme 037A $aLiteraturverzeichnis Seite 127-145 037C $dDissertation $eJohannes Gutenberg-Universität Mainz $f2023 037I $aUrheberrechtsschutz 1.0 $qDE-77 $2rs $uhttps://rightsstatements.org/vocab/InC/1.0/ 037J $aOpen Access $qDE-77 $2star $uhttps://purl.org/coar/access_right/c_abf2 $fUnrestricted online access 039D $aErscheint auch als $tTowards understanding R-loop regulation by RNAse H1 in saccharomyces cerevisiae / Fabio Pereira Bento $f2023 $lPereira Bento, Fabio, 1992- $nDruck-Ausgabe 045E $c010 047I $aAn RNA:DNA hybrid refers to the base pairing of RNA and DNA. In particular, R-loops are three-stranded nucleic acid structures composed of an RNA:DNA hybrid and a displaced DNA strand. In the recent years, several studies have shown that R-loops impact multiple biological processes, such as transcription, telomere maintenance, and DNA repair. Indeed, failure to resolve R-loops in a timely manner results in genomic instability. Hence, cells have evolved several mechanisms to tightly regulate R-loops. One of the most prominent example of an RNA:DNA hybrid removal factor is RNase H1, a monomeric enzyme that degrades the RNA moiety of RNA:DNA hybrids. In human cells, Replication Protein A (RPA) appears to be a regulator of RNase H1 by promoting its recruitment and activity on R-loops. However, it remains unclear if RPA or other proteins influence RNase H1 activity in yeast. RNase H1 is recruited to the chromatin in conditions with high R-loop levels, suggesting that RNase H1 binds to accumulated R-loops. However, how RNase H1 is regulated and responds to high R-loop levels is still elusive. In this study, we have employed in vitro and in vivo experiments to understand where, when and how RNase H1 binds to R-loops. We confirm that RNase H1 is recruited to loci with accumulated R-loops, especially in RNAPIII-transcribed genes. Furthermore, we show that RNase H1 can remove R-loops in all cell cycle phases, allowing RNase H1 to maintain R-loop homeostasis in all conditions, including outside of a replication-transcription conflict context. Using co-immunoprecipitation experiments, we confirm that RPA interacts with the first Hybrid-binding (HB) domain of RNase H1 in a DNA-dependent manner. However, overexpression of RNase H1 without the first HB domain is able to remove R-loops in vivo, suggesting that RNase H1 overexpression does not require RPA interaction to remove R-loops in yeast. Moreover, using in vivo and in vitro assays, we show that the second HB domain of RNase H1 is sufficient to promote binding and removal of R-loops, unlike what was described. We confirm that both HB domains of RNase H1 contribute to a stable interaction with R-loops and likely both HB domains have different functions in RNase H1 binding to substrates. Taken together, these results shed light on how RNase H1 recognizes and responds to stable RNA-DNA hybrids. lok: 50906068 3 exp: 50906068 3 1 #EPN 201B/01 $009-10-23 $t23:11:31.700 201C/01 $026-06-23 201U/01 $0utf8 203@/01 $01238353975 204P/01 $010.25358/openscience-9113 $S0 208@/01 $a26-06-23 $bl lok: 50906068 5 exp: 50906068 5 1 #EPN 201B/01 $009-10-23 $t23:11:31.706 201C/01 $026-06-23 201U/01 $0utf8 203@/01 $01238353983 204P/01 $010.25358/openscience-9113 $S0 208@/01 $a26-06-23 $bl lok: 50906068 6 exp: 50906068 6 1 #EPN 201B/01 $009-10-23 $t23:11:31.711 201C/01 $026-06-23 201U/01 $0utf8 203@/01 $01238353991 204P/01 $010.25358/openscience-9113 $S0 208@/01 $a26-06-23 $bl lok: 50906068 8 exp: 50906068 8 1 #EPN 201B/01 $009-10-23 $t23:11:31.715 201C/01 $026-06-23 201U/01 $0utf8 203@/01 $01238354009 204P/01 $010.25358/openscience-9113 $S0 208@/01 $a26-06-23 $bl lok: 50906068 10 exp: 50906068 10 1 #EPN 201B/01 $009-10-23 $t23:11:31.720 201C/01 $026-06-23 201U/01 $0utf8 203@/01 $01238354017 204P/01 $010.25358/openscience-9113 $S0 208@/01 $a26-06-23 $bl lok: 50906068 11 exp: 50906068 11 1 #EPN 201B/01 $009-10-23 $t23:11:31.723 201C/01 $026-06-23 201U/01 $0utf8 203@/01 $01238354025 204P/01 $010.25358/openscience-9113 $S0 208@/01 $a26-06-23 $bl lok: 50906068 13 exp: 50906068 13 1 #EPN 201B/01 $009-10-23 $t23:11:31.728 201C/01 $026-06-23 201U/01 $0utf8 203@/01 $01238354033 204P/01 $010.25358/openscience-9113 $S0 208@/01 $a26-06-23 $bl lok: 50906068 21 exp: 50906068 21 1 #EPN 201B/01 $009-10-23 $t23:11:31.735 201C/01 $026-06-23 201U/01 $0utf8 203@/01 $0123835405X 204P/01 $010.25358/openscience-9113 $S0 208@/01 $a26-06-23 $bl lok: 50906068 23 exp: 50906068 23 1 #EPN 201B/01 $009-10-23 $t23:11:31.738 201C/01 $026-06-23 201U/01 $0utf8 203@/01 $01238354068 204P/01 $010.25358/openscience-9113 $S0 208@/01 $a26-06-23 $bl lok: 50906068 24 exp: 50906068 24 1 #EPN 201B/01 $009-10-23 $t23:11:31.741 201C/01 $026-06-23 201U/01 $0utf8 203@/01 $01238354076 204P/01 $010.25358/openscience-9113 $S0 208@/01 $a26-06-23 $bl lok: 50906068 25 exp: 50906068 25 1 #EPN 201B/01 $009-10-23 $t23:11:31.744 201C/01 $026-06-23 201U/01 $0utf8 203@/01 $01238354084 204P/01 $010.25358/openscience-9113 $S0 208@/01 $a26-06-23 $bl lok: 50906068 36 exp: 50906068 36 1 #EPN 201B/01 $009-10-23 $t23:11:31.747 201C/01 $026-06-23 201U/01 $0utf8 203@/01 $01238354092 204P/01 $010.25358/openscience-9113 $S0 208@/01 $a26-06-23 $bl lok: 50906068 49 exp: 50906068 49 1 #EPN 201B/01 $009-10-23 $t23:11:31.750 201C/01 $026-06-23 201U/01 $0utf8 203@/01 $01238354106 204P/01 $010.25358/openscience-9113 $S0 208@/01 $a26-06-23 $bl lok: 50906068 51 exp: 50906068 51 1 #EPN 201B/01 $009-10-23 $t23:11:31.755 201C/01 $026-06-23 201U/01 $0utf8 203@/01 $01238354122 204P/01 $010.25358/openscience-9113 $S0 208@/01 $a26-06-23 $bl lok: 50906068 76 exp: 50906068 76 1 #EPN 201B/01 $009-10-23 $t23:11:31.782 201C/01 $026-06-23 201U/01 $0utf8 203@/01 $01238354149 204P/01 $010.25358/openscience-9113 $S0 208@/01 $a26-06-23 $bl lok: 50906068 107 exp: 50906068 107 1 #EPN 201B/01 $009-10-23 $t23:11:31.785 201C/01 $026-06-23 201U/01 $0utf8 203@/01 $01238354157 204P/01 $010.25358/openscience-9113 $S0 208@/01 $a26-06-23 $bl lok: 50906068 108 exp: 50906068 108 1 #EPN 201B/01 $009-10-23 $t23:11:31.788 201C/01 $026-06-23 201U/01 $0utf8 203@/01 $01238354165 204P/01 $010.25358/openscience-9113 $S0 208@/01 $a26-06-23 $bl lok: 50906068 204 exp: 50906068 204 1 #EPN 201B/01 $009-10-23 $t23:11:31.792 201C/01 $026-06-23 201U/01 $0utf8 203@/01 $01238354173 204P/01 $010.25358/openscience-9113 $S0 208@/01 $a26-06-23 $bl lok: 50906068 205 exp: 50906068 205 1 #EPN 201B/01 $009-10-23 $t23:11:31.795 201C/01 $026-06-23 201U/01 $0utf8 203@/01 $01238354181 204P/01 $010.25358/openscience-9113 $S0 208@/01 $a26-06-23 $bl
| LEADER | 00000cam a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 509060684 | ||
| 003 | DE-603 | ||
| 005 | 20250525233142.0 | ||
| 007 | cr|||||||||||| | ||
| 008 | 230626s2023 xx |||| om u00||u|eng c | ||
| 024 | 7 | |a 10.25358/openscience-9113 |2 doi | |
| 024 | 7 | |a urn:nbn:de:hebis:77-openscience-1fc85da6-3c27-4b77-8be7-b7363be969ae0 |2 urn | |
| 035 | |a (DE-599)HEB509060684 | ||
| 040 | |a DE-603 |b ger |c DE-603 |d DE-603 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 010 |q DE-101 |2 sdnb | ||
| 100 | 1 | |a Pereira Bento, Fabio |d 1992- |e Verfasser |4 aut |0 (DE-603)509060749 |0 (DE-588)1293998044 |2 gnd | |
| 245 | 0 | 0 | |a Towards understanding R-loop regulation by RNAse H1 in saccharomyces cerevisiae |c Fabio Pereira Bento |
| 264 | 1 | |a Mainz |c 2023 | |
| 264 | 2 | |a Mainz |b Johannes Gutenberg-Universität Mainz | |
| 300 | |a 1 Online-Ressource (II, 149 Seiten) |b Illustrationen, Diagramme | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Literaturverzeichnis Seite 127-145 | ||
| 502 | |b Dissertation |c Johannes Gutenberg-Universität Mainz |d 2023 | ||
| 520 | |a An RNA:DNA hybrid refers to the base pairing of RNA and DNA. In particular, R-loops are three-stranded nucleic acid structures composed of an RNA:DNA hybrid and a displaced DNA strand. In the recent years, several studies have shown that R-loops impact multiple biological processes, such as transcription, telomere maintenance, and DNA repair. Indeed, failure to resolve R-loops in a timely manner results in genomic instability. Hence, cells have evolved several mechanisms to tightly regulate R-loops. One of the most prominent example of an RNA:DNA hybrid removal factor is RNase H1, a monomeric enzyme that degrades the RNA moiety of RNA:DNA hybrids. In human cells, Replication Protein A (RPA) appears to be a regulator of RNase H1 by promoting its recruitment and activity on R-loops. However, it remains unclear if RPA or other proteins influence RNase H1 activity in yeast. RNase H1 is recruited to the chromatin in conditions with high R-loop levels, suggesting that RNase H1 binds to accumulated R-loops. However, how RNase H1 is regulated and responds to high R-loop levels is still elusive. In this study, we have employed in vitro and in vivo experiments to understand where, when and how RNase H1 binds to R-loops. We confirm that RNase H1 is recruited to loci with accumulated R-loops, especially in RNAPIII-transcribed genes. Furthermore, we show that RNase H1 can remove R-loops in all cell cycle phases, allowing RNase H1 to maintain R-loop homeostasis in all conditions, including outside of a replication-transcription conflict context. Using co-immunoprecipitation experiments, we confirm that RPA interacts with the first Hybrid-binding (HB) domain of RNase H1 in a DNA-dependent manner. However, overexpression of RNase H1 without the first HB domain is able to remove R-loops in vivo, suggesting that RNase H1 overexpression does not require RPA interaction to remove R-loops in yeast. Moreover, using in vivo and in vitro assays, we show that the second HB domain of RNase H1 is sufficient to promote binding and removal of R-loops, unlike what was described. We confirm that both HB domains of RNase H1 contribute to a stable interaction with R-loops and likely both HB domains have different functions in RNase H1 binding to substrates. Taken together, these results shed light on how RNase H1 recognizes and responds to stable RNA-DNA hybrids. | ||
| 655 | 7 | |a Hochschulschrift |2 gnd-content |0 (DE-588)4113937-9 |0 (DE-603)085338818 | |
| 710 | 2 | |a Johannes Gutenberg-Universität Mainz |e Grad-verleihende Institution |4 dgg |0 (DE-603)042777143 |0 (DE-588)2024320-0 |2 gnd | |
| 776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Pereira Bento, Fabio, 1992- |t Towards understanding R-loop regulation by RNAse H1 in saccharomyces cerevisiae / Fabio Pereira Bento |d 2023 |
| 856 | |u http://doi.org/10.25358/openscience-9113 |x Resolving-System | ||
| 856 | |u https://nbn-resolving.org/urn:nbn:de:hebis:77-openscience-1fc85da6-3c27-4b77-8be7-b7363be969ae0 |x Resolving-System | ||
| 856 | |u https://openscience.ub.uni-mainz.de/handle/20.500.12030/9130 |x Verlag |z kostenfrei | ||
| 924 | 1 | |9 603 |a (DE-603)1238353975 |b DE-603 |c HES |d d | |
| 924 | 1 | |9 603 |a (DE-603)1238353983 |b DE-603 |c HES |d d | |
| 924 | 1 | |9 603 |a (DE-603)1238353991 |b DE-603 |c HES |d d | |
| 924 | 1 | |9 603 |a (DE-603)1238354009 |b DE-603 |c HES |d d | |
| 924 | 1 | |9 603 |a (DE-603)1238354017 |b DE-603 |c HES |d d | |
| 924 | 1 | |9 603 |a (DE-603)1238354025 |b DE-603 |c HES |d d | |
| 924 | 1 | |9 603 |a (DE-603)1238354033 |b DE-603 |c HES |d d | |
| 924 | 1 | |9 603 |a (DE-603)123835405X |b DE-603 |c HES |d d | |
| 924 | 1 | |9 603 |a (DE-603)1238354068 |b DE-603 |c HES |d d | |
| 924 | 1 | |9 603 |a (DE-603)1238354076 |b DE-603 |c HES |d d | |
| 924 | 1 | |9 603 |a (DE-603)1238354084 |b DE-603 |c HES |d d | |
| 924 | 1 | |9 603 |a (DE-603)1238354092 |b DE-603 |c HES |d d | |
| 924 | 1 | |9 603 |a (DE-603)1238354106 |b DE-603 |c HES |d d | |
| 924 | 1 | |9 603 |a (DE-603)1238354122 |b DE-603 |c HES |d d | |
| 924 | 1 | |9 603 |a (DE-603)1238354149 |b DE-603 |c HES |d d | |
| 924 | 1 | |9 603 |a (DE-603)1238354157 |b DE-603 |c HES |d d | |
| 924 | 1 | |9 603 |a (DE-603)1238354165 |b DE-603 |c HES |d d | |
| 924 | 1 | |9 603 |a (DE-603)1238354173 |b DE-603 |c HES |d d | |
| 924 | 1 | |9 603 |a (DE-603)1238354181 |b DE-603 |c HES |d d | |


