Sprachkontrolle im Spiegel der Maschinellen Übersetzung

Titel: Sprachkontrolle im Spiegel der Maschinellen Übersetzung : Untersuchung zur Wechselwirkung ausgewählter Regeln der Kontrollierten Sprache mit verschiedenen Ansätzen der Maschinellen Übersetzung
Beteiligt:
Veröffentlicht: [Erscheinungsort nicht ermittelbar] : Language Science Press ; Language Science Press [Imprint], 2022
Umfang: 1 Online-Ressource
Format: E-Book
Sprache: Englisch
RVK-Notation:
Schlagworte:
ISBN: 9783961103942 ; 9783985540525
alg: 53099096
001A    $06055:26-06-25 
001B    $01999:15-08-25 $t07:15:02.000 
001D    $06055:26-06-25 
001U    $0utf8 
001X    $00 
002@    $0Oax 
002C    $aText $btxt $2rdacontent 
002D    $aComputermedien $bc $2rdamedia 
002E    $aOnline-Ressource $bcr $2rdacarrier 
003@    $0530990962 
004A    $A978-3-96110-394-2 
004A    $A978-3-9855405-2-5 
004R    $020.500.12657/61708 
007A    $0530990962 $aHEB 
007I    $0oapen-20.500.12657/61708 
009Q    $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $xR 
010@    $aeng 
011@    $a2022 
013D    $RWissenschaftliche Literatur $#Dissertations, Academic $#Thèses et écrits académiques $74113937-9 $8Hochschulschrift [Ts1] $9085338818 
017B    $aZDB-94-OAL 
021A    $aSprachkontrolle im Spiegel der Maschinellen Übersetzung $dUntersuchung zur Wechselwirkung ausgewählter Regeln der Kontrollierten Sprache mit verschiedenen Ansätzen der Maschinellen Übersetzung 
028C    $aMarzouk $BHerausgeber $dShaimaa $4edt 
033A    $p[Erscheinungsort nicht ermittelbar] $nLanguage Science Press ; Language Science Press [Imprint] 
033E    $pThe Hague $nOapen Foundation 
034D    $a1 Online-Ressource 
037J    $aOpen Access $2star $uhttps://purl.org/coar/access_right/c_abf2 $fUnrestricted online access 
044K    $RÜbersetzung $RComputerlinguistik $RComputerunterstützte Übersetzung $#Machine translating $#Traduction automatique $#Traduzione automatica $#Traducción automática $#Automatische Sprachenübersetzung $#Automatische Sprachübersetzung $#Automatisches Übersetzen $#Automatische Übersetzung $#Maschinelle Sprachübersetzung $#Maschinenübersetzung $74003966-3 $8Maschinelle Übersetzung [Ts1] $9085002364 
044K    $RTerminologiearbeit $#Terminology $#Terminologie $#Terminologie Kontrolle $#Terminologiekontrolle $74136260-3 $8Terminologische Kontrolle [Ts1] $9085505943 
045E    $c020 $c004 $c400 
045Z    $8ES 710 [Tkv] $9407873511 
047A    $aSacherschließung maschinell aus paralleler Ausg. übernommen 
047I    $aExamining the general impact of the Controlled Languages rules in the context of Machine Translation has been an area of research for many years. The present study focuses on the following question: How do the Controlled Language (CL) rules impact the Machine Translation (MT) output individually? Analyzing a German corpus-based test suite of technical texts that have been translated into English by different MT systems, the study endeavors to answer this question at different levels: the general impact of CL rules (rule- and system-independent), their impact at rule level (system-independent), their impact at system level (rule-independent), and at rule and system level. The results of five MT systems (a rule-based system, a statistical system, two differently constructed hybrid systems, and a neural system) are analyzed and contrasted. For this, a mixed-methods triangulation approach that includes error annotation, human evaluation, and automatic evaluation was applied. The data were analyzed both qualitatively and quantitatively based on the following parameters: number and type of MT errors, style and content quality, and scores from two automatic evaluation metrics. In line with many studies, the results show a general positive impact of the applied CL rules on the MT output. However, at rule level, only four rules proved to have positive effects on all parameters; three rules had negative effects on the parameters; and two rules did not show any significant impact. At rule and system level, the rules affected the MT systems differently, as expected. Some rules that had a positive impact on earlier MT approaches did not show the same impact on the neural MT approach. Furthermore, the neural MT delivered distinctly better results than earlier MT approaches, namely the highest error-free, style and content quality rates both before and after the rules application, which indicates that the neural MT offers a promising solution that no longer requires CL rules for improving the MT output, what in turn allows for a more natural style. 

lok: 53099096 3

exp: 53099096 3 1 #EPN
201B/01 $029-06-25 $t00:20:13.581 
201C/01 $028-06-25 
201U/01 $0utf8 
203@/01 $01309262691 
208@/01 $a28-06-25 $bl 
209S/01 $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $XR 

lok: 53099096 5

exp: 53099096 5 1 #EPN
201B/01 $015-08-25 $t07:15:02.000 
201C/01 $028-06-25 
201U/01 $0utf8 
203@/01 $01309262705 
208@/01 $a28-06-25 $bl 
209S/01 $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $XR 

lok: 53099096 8

exp: 53099096 8 1 #EPN
201B/01 $029-06-25 $t00:20:13.587 
201C/01 $028-06-25 
201U/01 $0utf8 
203@/01 $01309262713 
208@/01 $a28-06-25 $bl 
209S/01 $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $XR 

lok: 53099096 10

exp: 53099096 10 1 #EPN
201B/01 $029-06-25 $t00:20:13.590 
201C/01 $028-06-25 
201U/01 $0utf8 
203@/01 $01309262721 
208@/01 $a28-06-25 $bl 
209S/01 $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $XR 

lok: 53099096 11

exp: 53099096 11 1 #EPN
201B/01 $029-06-25 $t00:20:13.593 
201C/01 $028-06-25 
201U/01 $0utf8 
203@/01 $0130926273X 
208@/01 $a28-06-25 $bl 
209S/01 $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $XR 

lok: 53099096 13

exp: 53099096 13 1 #EPN
201B/01 $029-06-25 $t00:20:13.595 
201C/01 $028-06-25 
201U/01 $0utf8 
203@/01 $01309262748 
208@/01 $a28-06-25 $bl 
209S/01 $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $XR 

lok: 53099096 20

exp: 53099096 20 1 #EPN
201B/01 $029-06-25 $t00:20:13.598 
201C/01 $028-06-25 
201U/01 $0utf8 
203@/01 $01309262756 
208@/01 $a28-06-25 $bl 
209S/01 $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $XR 

lok: 53099096 21

exp: 53099096 21 1 #EPN
201B/01 $029-06-25 $t00:20:13.600 
201C/01 $028-06-25 
201U/01 $0utf8 
203@/01 $01309262764 
208@/01 $a28-06-25 $bl 
209S/01 $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $XR 

lok: 53099096 23

exp: 53099096 23 1 #EPN
201B/01 $029-06-25 $t00:20:13.603 
201C/01 $028-06-25 
201U/01 $0utf8 
203@/01 $01309262772 
208@/01 $a28-06-25 $bl 
209S/01 $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $XR 

lok: 53099096 24

exp: 53099096 24 1 #EPN
201B/01 $029-06-25 $t00:20:13.605 
201C/01 $028-06-25 
201U/01 $0utf8 
203@/01 $01309262780 
208@/01 $a28-06-25 $bl 
209S/01 $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $XR 

lok: 53099096 25

exp: 53099096 25 1 #EPN
201B/01 $029-06-25 $t00:20:13.608 
201C/01 $028-06-25 
201U/01 $0utf8 
203@/01 $01309262799 
208@/01 $a28-06-25 $bl 
209S/01 $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $XR 

lok: 53099096 36

exp: 53099096 36 1 #EPN
201B/01 $029-06-25 $t00:20:13.611 
201C/01 $028-06-25 
201U/01 $0utf8 
203@/01 $01309262802 
208@/01 $a28-06-25 $bl 
209S/01 $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $XR 

lok: 53099096 49

exp: 53099096 49 1 #EPN
201B/01 $029-06-25 $t00:20:13.614 
201C/01 $028-06-25 
201U/01 $0utf8 
203@/01 $01309262810 
208@/01 $a28-06-25 $bl 
209S/01 $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $XR 

lok: 53099096 51

exp: 53099096 51 1 #EPN
201B/01 $029-06-25 $t00:20:13.617 
201C/01 $028-06-25 
201U/01 $0utf8 
203@/01 $01309262829 
208@/01 $a28-06-25 $bl 
209S/01 $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $XR 

lok: 53099096 59

exp: 53099096 59 1 #EPN
201B/01 $029-06-25 $t00:20:13.619 
201C/01 $028-06-25 
201U/01 $0utf8 
203@/01 $01309262837 
208@/01 $a28-06-25 $bl 
209S/01 $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $XR 

lok: 53099096 74

exp: 53099096 74 1 #EPN
201B/01 $029-06-25 $t00:20:13.622 
201C/01 $028-06-25 
201U/01 $0utf8 
203@/01 $01309262845 
208@/01 $a28-06-25 $bl 
209S/01 $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $XR 

lok: 53099096 76

exp: 53099096 76 1 #EPN
201B/01 $029-06-25 $t00:20:13.625 
201C/01 $028-06-25 
201U/01 $0utf8 
203@/01 $01309262853 
208@/01 $a28-06-25 $bl 
209S/01 $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $XR 

lok: 53099096 107

exp: 53099096 107 1 #EPN
201B/01 $029-06-25 $t00:20:13.628 
201C/01 $028-06-25 
201U/01 $0utf8 
203@/01 $01309262861 
208@/01 $a28-06-25 $bl 
209S/01 $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $XR 

lok: 53099096 108

exp: 53099096 108 1 #EPN
201B/01 $029-06-25 $t00:20:13.630 
201C/01 $028-06-25 
201U/01 $0utf8 
203@/01 $0130926287X 
208@/01 $a28-06-25 $bl 
209S/01 $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $XR 

lok: 53099096 204

exp: 53099096 204 1 #EPN
201B/01 $029-06-25 $t00:20:13.634 
201C/01 $028-06-25 
201U/01 $0utf8 
203@/01 $01309262888 
208@/01 $a28-06-25 $bl 
209S/01 $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $XR 

lok: 53099096 205

exp: 53099096 205 1 #EPN
201B/01 $029-06-25 $t00:20:13.636 
201C/01 $028-06-25 
201U/01 $0utf8 
203@/01 $01309262896 
208@/01 $a28-06-25 $bl 
209S/01 $S0 $uhttps://library.oapen.org/handle/20.500.12657/61708 $XR
LEADER 00000cam a22000002c 4500
001 530990962
003 DE-603
005 20250815071502.0
007 cr||||||||||||
008 250626s2022 xx |||| om u00||u|eng c
020 |a 9783961103942 
020 |a 9783985540525 
024 7 |a 20.500.12657/61708  |2 hdl 
035 |a (DE-599)HEB530990962 
040 |a DE-603  |b ger  |c DE-603  |d DE-603 
041 |a eng 
084 |a 020  |a 004  |a 400  |q DE-101  |2 sdnb 
084 |a ES 710  |0 (DE-625)27878:  |0 (DE-603)407873511  |2 rvk 
245 0 0 |a Sprachkontrolle im Spiegel der Maschinellen Übersetzung  |b Untersuchung zur Wechselwirkung ausgewählter Regeln der Kontrollierten Sprache mit verschiedenen Ansätzen der Maschinellen Übersetzung 
264 1 |a [Erscheinungsort nicht ermittelbar]  |b Language Science Press ; Language Science Press [Imprint]  |c 2022 
264 2 |a The Hague  |b Oapen Foundation 
300 |a 1 Online-Ressource 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Examining the general impact of the Controlled Languages rules in the context of Machine Translation has been an area of research for many years. The present study focuses on the following question: How do the Controlled Language (CL) rules impact the Machine Translation (MT) output individually? Analyzing a German corpus-based test suite of technical texts that have been translated into English by different MT systems, the study endeavors to answer this question at different levels: the general impact of CL rules (rule- and system-independent), their impact at rule level (system-independent), their impact at system level (rule-independent), and at rule and system level. The results of five MT systems (a rule-based system, a statistical system, two differently constructed hybrid systems, and a neural system) are analyzed and contrasted. For this, a mixed-methods triangulation approach that includes error annotation, human evaluation, and automatic evaluation was applied. The data were analyzed both qualitatively and quantitatively based on the following parameters: number and type of MT errors, style and content quality, and scores from two automatic evaluation metrics. In line with many studies, the results show a general positive impact of the applied CL rules on the MT output. However, at rule level, only four rules proved to have positive effects on all parameters; three rules had negative effects on the parameters; and two rules did not show any significant impact. At rule and system level, the rules affected the MT systems differently, as expected. Some rules that had a positive impact on earlier MT approaches did not show the same impact on the neural MT approach. Furthermore, the neural MT delivered distinctly better results than earlier MT approaches, namely the highest error-free, style and content quality rates both before and after the rules application, which indicates that the neural MT offers a promising solution that no longer requires CL rules for improving the MT output, what in turn allows for a more natural style. 
650 7 |a Maschinelle Übersetzung  |0 (DE-588)4003966-3  |0 (DE-603)085002364  |2 gnd 
650 7 |a Terminologische Kontrolle  |0 (DE-588)4136260-3  |0 (DE-603)085505943  |2 gnd 
655 7 |a Hochschulschrift  |2 gnd-content  |0 (DE-588)4113937-9  |0 (DE-603)085338818 
700 1 |a Marzouk, Shaimaa  |e Herausgeber  |4 edt 
856 |u https://library.oapen.org/handle/20.500.12657/61708  |x Resolving-System  |z kostenfrei 
912 |a ZDB-94-OAL 
924 1 |9 603  |a (DE-603)1309262691  |b DE-603  |c HES  |d d 
924 1 |9 603  |a (DE-603)1309262705  |b DE-603  |c HES  |d d 
924 1 |9 603  |a (DE-603)1309262713  |b DE-603  |c HES  |d d 
924 1 |9 603  |a (DE-603)1309262721  |b DE-603  |c HES  |d d 
924 1 |9 603  |a (DE-603)130926273X  |b DE-603  |c HES  |d d 
924 1 |9 603  |a (DE-603)1309262748  |b DE-603  |c HES  |d d 
924 1 |9 603  |a (DE-603)1309262756  |b DE-603  |c HES  |d d 
924 1 |9 603  |a (DE-603)1309262764  |b DE-603  |c HES  |d d 
924 1 |9 603  |a (DE-603)1309262772  |b DE-603  |c HES  |d d 
924 1 |9 603  |a (DE-603)1309262780  |b DE-603  |c HES  |d d 
924 1 |9 603  |a (DE-603)1309262799  |b DE-603  |c HES  |d d 
924 1 |9 603  |a (DE-603)1309262802  |b DE-603  |c HES  |d d 
924 1 |9 603  |a (DE-603)1309262810  |b DE-603  |c HES  |d d 
924 1 |9 603  |a (DE-603)1309262829  |b DE-603  |c HES  |d d 
924 1 |9 603  |a (DE-603)1309262837  |b DE-603  |c HES  |d d 
924 1 |9 603  |a (DE-603)1309262845  |b DE-603  |c HES  |d d 
924 1 |9 603  |a (DE-603)1309262853  |b DE-603  |c HES  |d d 
924 1 |9 603  |a (DE-603)1309262861  |b DE-603  |c HES  |d d 
924 1 |9 603  |a (DE-603)130926287X  |b DE-603  |c HES  |d d 
924 1 |9 603  |a (DE-603)1309262888  |b DE-603  |c HES  |d d 
924 1 |9 603  |a (DE-603)1309262896  |b DE-603  |c HES  |d d